The case against binary trees

Stop using them.

Meeting Feb 6th 2024

(But first!) What's new in Dplug?

back to a nice 1:10 ratio

- Updated roadmap 2024 => https://github.com/AuburnSounds/Dplug/wiki/Roadmap
- Important macOS bug fixes (advice: move to v14.3.0+)
 https://github.com/AuburnSounds/Dplug/issues/741
- More D talks at DConf online: https://dconf.org/2024/online/index.html

Dplug v14.2 uses a modified **Red-Black tree** from Phobos, for Map and Set.

One item per Node.

Dplug v14.3 uses instead a **B-Tree** of order 32.

Each node can contain 31 items instead of just one.

Reference: https://en.wikipedia.org/wiki/B-tree

Common points:

- O(log(N))
 insertion,
 deletion
 look-up
- Always balanced
- A basis for std::map std::set, etc.

Some numbers

Insertion

- Largely dominated by allocator times.
- GC.new faster than malloc, hence builtin hashmaps grow the fastest.
- BTree order 32 wins about 2x over binary Red Black Tree.
 => less allocations.

Deletion

- Again, largely dominated by deallocation times.
- Test disables GC, so builtin hashmap release is fastest.
- BTree order 32 wins about 2x over binary Red Black Tree, again.
 - => less deallocations, less rebalance.

Deletion and Insertion have similar timings in hashmaps, B-Tree, Red-Black tree, and T-Tree.

Lookup

- builtin hashmaps get obliterated, probably because of the hash.
- Note sure what EMSI's
 T-Tree is doing here, it's
 100x slower than Dplug.
 Must be a bug.
- BTree order 32 wins about 2x over binary Red Black Tree, again.
 - => because cache-friendly

Performance data: look-up is about 200x faster than insertion or deletion.

Conclusion

- More than 2 children-per-node trounces 2 children-per-node.
 - Same for binary heap vs n-heap
- Binary Red-Black trees are ubiquitous, yet slower than vanilla B-Tree.
- ...and that's before we get to more optimizations: B+Tree, B*Tree, tuned order...
- Insertion and Deletion can be further optimized with specialized memory pool. The allocator is the bottleneck for say, parsing JSON values and putting them in a map.
- Put more children in your tree nodes if you can.
- B-Tree available in Dplug v14.3, nothing to do as user. Text-rendering will be a bit faster.