
The case against binary trees

Meeting
Feb 6th 2024

Stop using them.



(But first!) What’s new in Dplug?

- Updated roadmap 2024 => 
https://github.com/AuburnSounds/Dplug/wiki/Roadmap

- Important macOS bug fixes (advice: move to v14.3.0+)
https://github.com/AuburnSounds/Dplug/issues/835
https://github.com/AuburnSounds/Dplug/issues/741

- More D talks at DConf online: 
https://dconf.org/2024/online/index.html

back to a nice 1:10 ratio

https://github.com/AuburnSounds/Dplug/wiki/Roadmap
https://github.com/AuburnSounds/Dplug/issues/835
https://github.com/AuburnSounds/Dplug/issues/741
https://dconf.org/2024/online/index.html


Dplug v14.2 uses a modified Red-Black tree from 
Phobos, for Map and Set.

One item per Node.

Reference: https://en.wikipedia.org/wiki/Red%E2%80%93black_tree



Dplug v14.3 uses instead a B-Tree of order 32.

Reference: https://en.wikipedia.org/wiki/B-tree

Each node can contain
31 items instead of just one.



Common points:
● O(log(N)) 

       insertion, 
       deletion
       look-up

● Always balanced
● A basis for std::map

                      std::set, etc.
Nodes allocated with malloc in Dplug.



Some numbers



Insertion

- Largely dominated by 
allocator times.

- GC.new faster than malloc, 
hence builtin hashmaps grow 
the fastest.

- BTree order 32 wins about 2x 
over binary Red Black Tree.
=> less allocations.

New Map
 Old Map



Deletion

- Again, largely dominated by 
deallocation times.

- Test disables GC, so builtin 
hashmap release is fastest.

- BTree order 32 wins about 2x 
over binary Red Black Tree, 
again.
=> less deallocations, less 
rebalance.

Deletion and Insertion have similar
timings in hashmaps, B-Tree, Red-Black 
tree, and T-Tree.

New Map
 Old Map



          Lookup

● builtin hashmaps get 
obliterated, probably 
because of the hash.

● Note sure what EMSI’s 
T-Tree is doing here, it’s 
100x slower than Dplug. 
Must be a bug.

● BTree order 32 wins about 
2x over binary Red Black 
Tree, again.
=> because cache-friendly

Performance data: look-up is about 200x faster than insertion or deletion.



Conclusion
● More than 2 children-per-node trounces 2 children-per-node.

○ Same for binary heap vs n-heap
● Binary Red-Black trees are ubiquitous, yet slower than vanilla B-Tree.
● …and that’s before we get to more optimizations: B+Tree, B*Tree, tuned 

order…
● Insertion and Deletion can be further optimized with specialized memory 

pool. The allocator is the bottleneck for say, parsing JSON values and 
putting them in a map.

● Put more children in your tree nodes if you can.
● B-Tree available in Dplug v14.3, nothing to do as user.

Text-rendering will be a bit faster.


