The case against binary trees

Stop using them.
Meeting
Feb 6th 2024
plug

(BUt ﬁI’StI) What’s neW in Dplug? 0O (@ 610pen + 683 Closed

back to a nice 1:10 ratio

- Updated roadmap 2024 =>
https:.//github.com/AuburnSounds/Dplug/wiki/Roadmap

- Important macOS bug fixes (advice: move to v14.3.0+)
https:.//qgithub.com/AuburnSounds/Dplug/issues/835
https:/Zqgithub.com/AuburnSounds/Dplug/issues/741

- More D talks at DConf online;
https://dconf.org/2024/online/index.html

https://github.com/AuburnSounds/Dplug/wiki/Roadmap
https://github.com/AuburnSounds/Dplug/issues/835
https://github.com/AuburnSounds/Dplug/issues/741
https://dconf.org/2024/online/index.html

Dplug vi14.2 uses a modified Red-Black tree from
Phobos, for Map and Set.

One item per Node. ﬂ

Reference: https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Dplug v14.3 uses instead a B-Tree of order 32.

Each node can contain
31 items instead of just one.

A B-tree (Bayer & McCreight 1972) of order 5 (Knuth 1998). &J

Reference: https://en.wikipedia.org/wiki/B-tree

Common points:
e O(log(N))
Insertion,
deletion
look-up
e Always balanced
e A basis for std:map
std::set, etc.

Nodes allocated with malloc in Dplug.

A B-tree (Bayer & McCreight 1972) of order 5 (Knuth 1998). &I

Some numbers

INSERTION TIMES (us) Mapl(int, string), GC disabled, random order

[J
e Dpiug previous Map (Fac-Sisck r2s) e Dolug 123 newSTree Mao o TTres (Ewscomizinets) e Suitn drumtime hashmans I nse rt I O n

10000

- Largely dominated by

o allocator times.

- GC.new faster than malloc,
hence builtin hashmaps grow
the fastest.

- BTree order 32 wins about 2x
over binary Red Black Tree.
=> |ess allocations.

10 100 1000 10000 100000

tems

DELETION TIMES (us)

10000

1000

== Dpiug previous Map (Red-Black tree) == Dplug v14.3 new STree Map

Mapl(int, string), GC disabled, random order

TTres (emsi-containers) == Builtin druntime hashmaps

1000 10000

100000

Deletion

- Again, largely dominated by
deallocation times.

- Test disables GC, so builtin
hashmap release is fastest.

- BTree order 32 wins about 2x
over binary Red Black Tree,
again.
=> |ess deallocations, less
rebalance.

Deletion and Insertion have similar
timings in hashmaps, B-Tree, Red-Black
tree, and T-Tree.

LOOKUP(100x) TIMES (us) Mapl(int, string), GC disabled, random order

== Dplug previous Map (Red-Siack tree}] == Dplugvi43newSTreeMap == Tiree (emsicontainers) == Builtin druntime hashmaps I OO ku p

e builtin hashmaps get
obliterated, probably
because of the hash.

e Note sure what EMSI’s
T-Tree is doing here, it’s
100x slower than Dplug.
Must be a bug.

e BTreeorder 32 wins about
2x over binary Red Black

© 100 1000 10000 100000 Tree, again.

=> because cache-friendly

Performance data: look-up is about 200x faster than insertion or deletion.

Conclusion

More than 2 children-per-node trounces 2 children-per-node.

o Same for binary heap vs n-heap
Binary Red-Black trees are ubiquitous, yet slower than vanilla B-Tree.
.and that's before we get to more optimizations: B+Tree, B Tree, tuned
order..
Insertion and Deletion can be further optimized with specialized memory
pool. The allocator is the bottleneck for say, parsing JSON values and
putting them in a map.
Put more children in your tree nodes if you can.
B-Tree available in Dplug v14.3, nothing to do as user.
Text-rendering will be a bit faster.

